The Energy Experts Reconvene at the WSJ
Generally when I find myself having to write a follow-up post to something I wrote, it’s because I obviously didn’t make my points clearly enough. I found this to be the case during a lively Twitter discussion following my latest contribution to the Wall Street Journal’s (WSJ) Energy Experts Panel. But I love these sorts of discussions because they help me hone the message I am trying to deliver.
This week the WSJ began publishing the latest round of answers to questions that were submitted to their energy panel several weeks ago. The first question answered this week was: What is the single biggest misconception people have about renewable energy in the U.S.?
First, if you don’t know about the WSJ Expert Panels, I explained that in some detail here. Essentially, the WSJ has groups of experts in different fields, and they pose questions on various topics. We are asked to write ~ 300-word answers to these questions, which often means leaving out caveats and/or clarifications. The answers are more detailed than the 140 characters allowed by Twitter, but some topics leave a lot of issues unaddressed with just a 300-word answer.
[Hear More: Louis-Vincent Gave: Energy and Manufacturing Renaissance Coming to the US]
What Is Renewable Energy?
In a nutshell, my answer to the question is that the biggest misconception is the extent to which many of our “renewables” aren’t strictly renewable. To explain what I mean by that, I started out by defining “renewable.” What does renewable energy mean? This question isn’t as simple as it sounds.
For example, if a plant grows, is harvested, and is replanted, we might say that is renewable. But what if we managed to get 10 times the yield by application of fossil-fuel based fertilizers, pesticides, and herbicides that at the same time depleted a fossil aquifer? Is it still renewable? According to the way I view renewable energy, then this source is now only partially renewable, which means it can only be sustained for so long. Yes, there is still a renewable component, but now we have introduced nonrenewable aspects to provide greater yields. Could we still get 10 times the yield without the nonrenewable components? Maybe, maybe not.
My answer sparked a Twitter discussion which revolved around the definition of renewable energy. At one point the Wikipedia definition of renewable energy was cited, and it says “Renewable energy is generally defined as energy that comes from resources which are continually replenished on a human timescale such as sunlight, wind, rain, tides, waves and geothermal heat.”
Nonrenewable Energy From Renewable Sources
Of course I don’t dispute that the energy that arrives on earth from the sun is a renewable source, but solar power may not be renewable energy. It all depends on how we harvest it. This is my point. As a hypothetical example, assume that we can only produce solar power by utilizing some rare resource that will run out in 3 years. Under that scenario, is solar power renewable? Of course the sun will still shine, but if we have no way to continue to harvest and use that power then solar power via that particular method isn’t renewable, because truly renewable energy production can’t deplete critical resources (in my opinion).
Nitpicks about definitions aside, why do we care about renewable energy? Because in theory we could continue to harvest it in perpetuity without depleting nonrenewable resources and without damaging the environment. It would be energy that we could use that wouldn’t put future generations at any sort of disadvantage. But insert important nonrenewable components into that chain of gathering, processing, and delivering renewable energy and you have a system that fails that “in perpetuity” test. Thus for me, that would be a renewable energy system that isn’t sustainable, which means it isn’t fully renewable, Wikipedia definitions notwithstanding. (Note that such a system may still be better than the status quo; it just depends on the details).
Now here is an important caveat that was lost on some. My target here wasn’t wind and solar. They were used merely as examples to show that pretty much every energy system has nonrenewable aspects. Unfortunately, some sought to interpret my article as an affront to wind and solar. In fact, some interpreted my article as a call to cease development of renewables and to maintain the status quo. I suppose these sorts of misinterpretations should no longer surprise me.
But not all renewables are created equally. As we incentivize and subsidize renewable energy, we have to consider important questions, like 1). How long before any nonrenewable inputs are depleted?; 2). Does the production of the nonrenewable inputs damage the environment?; 3). Are there alternatives that we could ultimately use instead of the nonrenewable inputs? Because in many cases the switch from 80% renewable energy production to 100% renewable energy for a particular energy technology may be simply a matter of economics, and not necessity. I am concerned about the cases where it may be more necessity, in which case we have a nonrenewable renewable, or a pseudo-renewable.
How Renewable Are Biofuels?
My real target here is certain biofuels that are thoroughly dependent upon fossil fuels — particularly natural gas — but that are all treated as equally renewable. For instance, consider a hypothetical situation in which production of 1 BTU of some specific biofuel required more than 1 BTU of petroleum. In that case, we would have a situation that is worse than the status quo, but people could pat themselves on the back because we are using “renewable” energy. (I understand that a certain greenhouse gas reduction is supposed to be achieved before renewable sources qualify for subsidies and mandates under EPA definitions, but those reductions are based on modeling assumptions that may prove invalid under actual production conditions).
There are varying degrees of renewable, and in fact the scale doesn’t merely go from 0% to 100%. In the previous example, if 1 BTU of biofuel required 2 BTUs of petroleum to produce, that biofuel is worse than 0% renewable. In that case you would be better off just to use the petroleum directly. Likewise, if 1 BTU of a biofuel could displace (through synergies) more than 1 BTU of petroleum, you could argue that it is better than 100% renewable. Yet in both of these cases, that BTU of the biofuel may be considered to be totally renewable.
The important thing to keep in mind, though, is that even partially renewable is generally preferred over totally nonrenewable. I say “generally” because it depends on the factors that make that resource “partially” renewable. Whale oil, for instance, is a renewable fuel, but the more whale oil we decide to consume the less renewable it becomes. At some point (setting aside the ethical arguments) the argument will become “OK, nonrenewable in this case is better, because it buys some time to find something more renewable than whale oil.”
Conclusions
My objective in writing articles like this is to argue that we don’t want to swap one unsustainable economy for another. We want to consider critical nonrenewable inputs in the production of renewable sources, and we don’t want to reward those that are overly reliant on those nonrenewable inputs. We don’t want our energy sources — renewable or nonrenewable — to place future generations at a significant disadvantage.
The take home message is not “Renewables are just as bad as nonrenewables since they ARE really nonrenewables.” It may be that in some cases this is true, but it isn’t true that all renewables can be so broadly classified. The take home should be “All energy sources have trade-offs, and it is important to understand all sides of those trade-offs.”
Source: Energy Trends Insider